Botswana Mozambique South Africa Zimbabwe About Tutorial Glossary Documents Images Maps Google Earth go
Please provide feedback! Click for details
Home The River Basin People and the River Governance Resource Management
The Limpopo River Basin
 Introduction
Geography
Climate and Weather
Hydrology
Water Quality
Ecology and Biodiversity
 Ecology
 Aquatic Ecology
 Building Blocks
 Aquatic Habitats
 Life in Aquatic Ecosystems
 Food Chains and Webs
Biomass and Production
 Classification of Organisms
 Factors Affecting Ecosystems
 Wetlands
 Biodiversity
 Millennium Ecosystem Assessment
Sub-basin Summaries
 References

 



Feedback

send a comment

Feedback

 

Aquatic Ecosystems: Biomass and Production  

Organisms use energy to maintain biological functions and to enable growth and reproduction. The organic matter produced by autotrophs and heterotrophs, in excess of what they need to sustain life, adds to the ecosystem’s total biomass. The biomass in an ecosystem includes the mass of all living and dead organic matter. Production is the incremental increase in biomass produced by organisms over a period of time. Estimates of biomass and production can be used to assess the health of aquatic ecosystems.

Primary production refers to the production of organic matter, such as new cells, mainly by photosynthetic plants. It is expressed as a rate of biomass production—for example, the amount of wood produced each year.

Secondary production is the assimilation of organic material and building of tissue by heterotrophs, and may involve animals eating plants, animals eating other animals, or microorganisms decomposing dead organisms to obtain the resources (material, energy, nutrients) needed to produce biomass. Secondary production is also expressed as a rate of biomass production, such as the amount of meat produced by grazing cattle each year.

In a productive environment, living plant or animal tissue will accumulate over time. Biomass is the amount of this accumulated material at a given moment, while production is the rate of increase in the total biomass. In a river system, biomass may be lost by export (such as downstream transport), or gained by import from other systems (such as leaves falling into a stream).

Estimates of biomass and production can be applied at various spatial scales and to broad or narrow groups of organisms, such as all organisms in a lake, all fish in a lake, or all yellow fish in a lake. Production is often difficult to estimate, since it requires, among other things, accurate measurements of biomass, repeated at consistent intervals over a long period.

High biomass does not necessarily imply high production, and vice versa. For example, the biomass of plankton in a waterbody may be low, but because plankton grow and reproduce quickly, the plankton population may replace itself relatively quickly—it has a high rate of production.

This figure illustrates energy flows related to the accumulation of biomass in an individual animal. Energy is obtained through food, while energy is consumed or lost in metabolic processes (i.e., respiration) and the excretion of wastes.
Source: NTEAP 2007
( click to enlarge )

 



Interactive

Explore the sub-basins of the Limpopo River


Explore the interactions of living organisms in aquatic environments


Examine how the hydrologic cycle moves water through and around the earth


Tour video scenes along the Limpopo related to The River Basin Theme